Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393032

RESUMO

Biofilm is accountable for nosocomial infections and chronic illness, making it a serious economic and public health problem. Staphylococcus epidermidis, thanks to its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in biofilm-associated infections of medical devices. Therefore, the research of new molecules able to interfere with S. epidermidis biofilm formation has a remarkable interest. In the present work, the attention was focused on Pseudomonas sp. TAE6080, an Antarctic marine bacterium able to produce and secrete an effective antibiofilm compound. The molecule responsible for this activity was purified by an activity-guided approach and identified by LC-MS/MS. Results indicated the active protein was a periplasmic protein similar to the Pseudomonas aeruginosa PAO1 azurin, named cold-azurin. The cold-azurin was recombinantly produced in E. coli and purified. The recombinant protein was able to impair S. epidermidis attachment to the polystyrene surface and effectively prevent biofilm formation.


Assuntos
Azurina , Pseudomonas , Azurina/metabolismo , Antibacterianos/metabolismo , Regiões Antárticas , Escherichia coli , Cromatografia Líquida , Espectrometria de Massas em Tandem , Biofilmes , Pseudomonas aeruginosa , Staphylococcus epidermidis
2.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36478021

RESUMO

Polyethylene (PE) is high molecular weight synthetic polymer, very hydrofobic and hardly biodegradable. To increase polyethylene bio-degradability it is very important to find microorganisms that improve the PE hydrophilic level and/or reduce the length of its polymeric chain by oxidation. In this study, we isolated Cladosporium halotolerans, a fungal species, from the gastric system of Galleria mellonella larvae. Here, we show that C. halotolerans grows in the presence of PE polymer, it is able to interact with plastic material through its hyphae and secretes enzymes involved in PE degradation.


Assuntos
Plásticos , Polietileno , Animais , Polietileno/metabolismo , Cladosporium/metabolismo , Polímeros , Biodegradação Ambiental
3.
Mar Drugs ; 20(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36547894

RESUMO

The development of new approaches to prevent microbial surface adhesion and biofilm formation is an emerging need following the growing understanding of the impact of biofilm-related infections on human health. Staphylococcus epidermidis, with its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in infections of medical devices. In the research of new anti-biofilm agents against S. epidermidis biofilm, Antarctic marine bacteria represent an untapped reservoir of biodiversity. In the present study, the attention was focused on Psychrobacter sp. TAE2020, an Antarctic marine bacterium that produces molecules able to impair the initial attachment of S. epidermidis strains to the polystyrene surface. The setup of suitable purification protocols allowed the identification by NMR spectroscopy and LC-MS/MS analysis of a protein-polysaccharide complex named CATASAN. This complex proved to be a very effective anti-biofilm agent. Indeed, it not only interferes with cell surface attachment, but also prevents biofilm formation and affects the mature biofilm matrix structure of S. epidermidis. Moreover, CATASAN is endowed with a good emulsification activity in a wide range of pH and temperature. Therefore, its use can be easily extended to different biotechnological applications.


Assuntos
Psychrobacter , Humanos , Antibacterianos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Biofilmes , Staphylococcus epidermidis
4.
J Proteome Res ; 21(9): 2173-2184, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35969501

RESUMO

Animal glues are widely used in restoration as adhesives, binders, and consolidants for organic and inorganic materials. Their variable performances are intrinsically linked to the adhesive properties of collagen, which determine the chemical, physical, and mechanical properties of the glue. We have molecularly characterized the protein components of a range of homemade and commercial glues using mass spectrometry techniques. A shotgun proteomic analysis provided animal origin, even when blended, and allowed us to distinguish between hide and bone glue on the basis of the presence of collagen type III, which is abundant in connective skin/leather tissues and poorly synthetized in bones. Furthermore, chemical modifications, a consequence of the preparation protocols from the original animal tissue, were thoroughly evaluated. Deamidation, methionine oxidation, and backbone cleavage have been analyzed as major collagen modifications, demonstrating their variability among different glues and showing that, on average, bone glues are less deamidated than hide glues, but more fragmented, and mixed-collagen glues are overall less deamidated than pure glues. We believe that these data may be of general analytical interest in the characterization of collagen-based materials and may help restorers in the selection of the most appropriate materials to be used in conservation treatments.


Assuntos
Colágeno , Proteômica , Animais
5.
Cancer Chemother Pharmacol ; 89(6): 809-823, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543764

RESUMO

PURPOSE: Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. METHODS: A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. RESULTS: Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. CONCLUSIONS: In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Ouro/química , Compostos de Ouro , Humanos , Metano/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução , Proteômica
6.
mBio ; 12(6): e0281321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34872358

RESUMO

Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to humans. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pulldown assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosyl-l-methionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyze SAM-dependent arsenite methylation with formation of monomethylarsenites (MMAs) and dimethylarsenites (DMAs). In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene encoding a stabilized yellow fluorescent protein (sYFP) to create a sensitive genome-based bioreporter system for the detection of arsenic ions. IMPORTANCE We here describe the discovery of an unknown protein by using a proteomics approach with a transcriptional regulator as bait. Remarkably, we successfully obtained a novel type of enzyme through the interaction with a transcriptional regulator controlling the expression of this enzyme. Employing this strategy, we isolated TtArsM, the first thermophilic prokaryotic arsenite methyltransferase, as a new enzyme of the arsenic resistance mechanism in T. thermophilus HB27. The atypical arsenite binding site of TtArsM categorizes the enzyme as the first member of a new arsenite methyltransferase type, exclusively present in the Thermus genus. The enzyme methylates arsenite-producing MMAs and DMAs. Furthermore, we developed an hyperthermophilic Cas9-based genome-editing tool, active up to 65°C. The tool allowed us to perform highly efficient, marker-free modifications (either gene deletion or insertion) in the T. thermophilus genome. With these modifications, we confirmed the critical role of TtArsM in the arsenite detoxification system and developed a sensitive whole-cell bioreporter for arsenic ions. We anticipate that the developed tool can be easily adapted for editing the genomes of other thermophilic bacteria, significantly boosting fundamental and metabolic engineering in hyperthermophilic microorganisms.


Assuntos
Arsênio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Metiltransferases/química , Metiltransferases/genética , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Arsênio/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sistemas CRISPR-Cas , Estabilidade Enzimática , Edição de Genes , Metiltransferases/metabolismo , Alinhamento de Sequência , Thermus thermophilus/química , Thermus thermophilus/genética
7.
Plant J ; 108(6): 1547-1564, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767660

RESUMO

As other arbuscular mycorrhizal fungi, Gigaspora margarita contains unculturable endobacteria in its cytoplasm. A cured fungal line has been obtained and showed it was capable of establishing a successful mycorrhizal colonization. However, previous OMICs and physiological analyses have demonstrated that the cured fungus is impaired in some functions during the pre-symbiotic phase, leading to a lower respiration activity, lower ATP, and antioxidant production. Here, by combining deep dual-mRNA sequencing and proteomics applied to Lotus japonicus roots colonized by the fungal line with bacteria (B+) and by the cured line (B-), we tested the hypothesis that L. japonicus (i) activates its symbiotic pathways irrespective of the presence or absence of the endobacterium, but (ii) perceives the two fungal lines as different physiological entities. Morphological observations confirmed the absence of clear endobacteria-dependent changes in the mycorrhizal phenotype of L. japonicus, while transcript and proteomic datasets revealed activation of the most important symbiotic pathways. They included the iconic nutrient transport and some less-investigated pathways, such as phenylpropanoid biosynthesis. However, significant differences between the mycorrhizal B+/B- plants emerged in the respiratory pathways and lipid biosynthesis. In both cases, the roots colonized by the cured line revealed a reduced capacity to activate genes involved in antioxidant metabolism, as well as the early biosynthetic steps of the symbiotic lipids, which are directed towards the fungus. Similar to its pre-symbiotic phase, the intraradical fungus revealed transcripts related to mitochondrial activity, which were downregulated in the cured line, as well as perturbation in lipid biosynthesis.


Assuntos
Burkholderiaceae/fisiologia , Fungos/fisiologia , Lotus/microbiologia , Micorrizas/fisiologia , Simbiose/fisiologia , Antioxidantes/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Lotus/fisiologia , Mitocôndrias/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Análise de Componente Principal , Estresse Fisiológico
8.
Pharmaceutics ; 13(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071747

RESUMO

Follicle-stimulating hormone (FSH) is a glycohormone synthesized by adenohypophysis, and it stimulates ovulation in women and spermatogenesis in men by binding to its receptor (FSHR). FSHR is involved in several mechanisms to transduce intracellular signals in response to the FSH stimulus. Exogenous FSH is currently used in the clinic for ovarian hyperstimulation during in vitro fertilization in women, and for treatment of infertility caused by gonadotropin deficiency in men. The glycosylation of FSH strongly affects the binding affinity to its receptor, hence significantly influencing the biological activity of the hormone. Therefore, the accurate measurement and characterization of serum hFSH glycoforms will contribute to elucidating the complex mechanism of action by which different glycoforms elicit distinct biological activity. Nowadays ELISA is the official method with which to monitor serum hFSH, but the test is unable to distinguish between the different FSH glycovariants and is therefore unsuitable to study the biological activity of this hormone. This study presents a preliminary alternative strategy for identifying and quantifying serum hFSH glycoforms based on immunopurification assay and mass spectrometry (MS), and parallel reaction monitoring (PRM) analysis. In this study, we provide an MS-PRM data acquisition method for hFSH glycopeptides identification with high specificity and their quantification by extracting the chromatographic traces of selected fragments of glycopeptides. Once set up for all its features, the proposed method could be transferred to the clinic to improve fertility treatments and follow-ups in men and women.

9.
Antioxidants (Basel) ; 10(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535382

RESUMO

Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood cells. Prx2 belongs to a well-known family of antioxidants, the peroxiredoxins (Prxs), that are widely expressed in mammalian cells. Prx2 is a typical, homodimeric, 2-Cys Prx that uses two cysteine residues to accomplish the task of detoxifying a vast range of organic peroxides, H2O2, and peroxynitrite. Although progress has been made on functional characterization of Prx2, much still remains to be investigated on Prx2 post-translational changes. Here, we first show that Prx2 is Tyrosine (Tyr) phosphorylated by Syk in red cells exposed to oxidation induced by diamide. We identified Tyr-193 in both recombinant Prx2 and native Prx2 from red cells as a specific target of Syk. Bioinformatic analysis suggests that phosphorylation of Tyr-193 allows Prx2 conformational change that is more favorable for its peroxidase activity. Indeed, Syk-induced Tyr phosphorylation of Prx2 enhances in vitro Prx2 activity, but also contributes to Prx2 translocation to the membrane of red cells exposed to diamide. The biologic importance of Tyr-193 phospho-Prx2 is further supported by data on red cells from a mouse model of humanized sickle cell disease (SCD). SCD is globally distributed, hereditary red cell disorder, characterized by severe red cell oxidation due to the pathologic sickle hemoglobin. SCD red cells show Tyr-phosphorylated Prx2 bound to the membrane and increased Prx2 activity when compared to healthy erythrocytes. Collectively, our data highlight the novel link between redox related signaling and Prx2 function in normal and diseased red cells.

10.
J Proteomics ; 231: 104039, 2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33147491

RESUMO

Identification and characterization of ancient proteins still require technical developments towards non-invasiveness, sensitivity, versatility and ease of use of the analyses. We report that the enzyme functionalized films, described in Cicatiello et al. (2018), can be used efficiently on the surface of different objects ranging from fixative-coated paper to canvas to the coating on an albumen photograph, as well as the much harder surfaces of ivory objects and the proteinaceous binders in the decoration of a wooden Egyptian coffin. The mixture of digested peptides that are efficiently captured on the functionalized surface are also amenable to LC-MS/MS analysis, which is necessary to confidently identify chemical modifications induced upon degradation, in order to characterize the conservation state of proteins. Moreover, in a two-step procedure, we have combined the trypsin functionalized film with a PNGaseF functionalized film, which adds a deglycosylation pretreatment allowing improved detection of glycosylated proteins. SIGNIFICANCE: User friendly trypsin functionalized films were implemented to expand their potential as versatile, modular tools that can be widely exploited in the world of diagnosis of cultural heritage objects, ancient proteins, and palaeoproteomics: a procedure that could be carried out by conservators or archaeologists first on-site and later analysed with standard MS techniques.


Assuntos
Arqueologia , Proteínas/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida , Tripsina
11.
Redox Biol ; 36: 101639, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863204

RESUMO

Fyn is a tyrosine kinase belonging to the Src family (Src-Family-Kinase, SFK), ubiquitously expressed. Previously, we report that Fyn is important in stress erythropoiesis. Here, we show that in red cells Fyn specifically stimulates G6PD activity, resulting in a 3-fold increase enzyme catalytic activity (kcat) by phosphorylating tyrosine (Tyr)-401. We found Tyr-401 on G6PD as functional target of Fyn in normal human red blood cells (RBC), being undetectable in G6PD deficient RBCs (G6PD-Mediterranean and G6PD-Genova). Indeed, Tyr-401 is located to a region of the G6PD molecule critical for the formation of the enzymatically active dimer. Amino acid replacements in this region are mostly associated with a chronic hemolysis phenotype. Using mutagenesis approach, we demonstrated that the phosphorylation status of Tyr401 modulates the interaction of G6PD with G6P and stabilizes G6PD in a catalytically more efficient conformation. RBCs from Fyn-/-mice are defective in G6PD activity, resulting in increased susceptibility to primaquine-induced intravascular hemolysis. This negatively affected the recycling of reduced Prx2 in response to oxidative stress, indicating that defective G6PD phosphorylation impairs defense against oxidation. In human RBCs, we confirm the involvement of the thioredoxin/Prx2 system in the increase vulnerability of G6PD deficient RBCs to oxidation. In conclusion, our data suggest that Fyn is an oxidative radical sensor, and that Fyn-mediated Tyr-401 phosphorylation, by increasing G6PD activity, plays an important role in the physiology of RBCs. Failure of G6PD activation by this mechanism may be a major limiting factor in the ability of G6PD deficient RBCs to withstand oxidative stress.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Animais , Eritrócitos , Glucose-6-Fosfato , Deficiência de Glucosefosfato Desidrogenase/genética , Hemólise , Camundongos , Proteínas Proto-Oncogênicas c-fyn
12.
Cells ; 9(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872358

RESUMO

The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional
13.
Foods ; 9(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630507

RESUMO

Chemical compounds within tea (Camellia sinensis) are characterized by an extensive heterogeneity; some of them are crucial for their protective and defensive role in plants, and are closely connected to the benefits that the consumption of tea can provide. This paper is mainly focused on the characterization of polyphenols (secondary metabolites generally involved in defense against ultraviolet radiation and aggression by pathogens) and metals, extracted from nine Chinese tea samples, by integrating different mass spectrometry methodologies, LC-MS/MS in multiple reaction monitoring (MRM) and inductively coupled plasma mass spectrometry (ICP-MS). Our approach allowed to identify and compare forty polyphenols differently distributed in tea infusions at various fermentation levels. The exploration of polyphenols with nutraceutical potential in tea infusions can widely benefit especially tea-oriented populations. The worldwide consumption of tea requires at the same time a careful monitoring of metals released during the infusion of tea leaves. Metal analysis can provide the identification of many healthy minerals such as potassium, sodium, calcium, magnesium, differently affected by the fermentation of leaves. Our results allowed us: (i) to draw up a polyphenols profile of tea leaves subjected to different fermentation processes; (ii) to identify and quantify metals released from tea leaves during infusion. In this way, we obtained a molecular fingerprint useful for both nutraceutical applications and food control/typization, as well as for frauds detection and counterfeiting.

14.
Food Res Int ; 134: 109200, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517936

RESUMO

The aim of this study was to investigate the gelling behavior of proteins in bio-tofu (soymilk-cow milk mixture gel) coagulated by microbial transglutaminase (MTGase) combined with lactic acid bacteria (LAB). It was shown that MTGase (3.0 U/g protein) treatment of soymilk-cow milk mixture (SCMM) could not induce gelation at 43℃ even if the incubation was lasting 4 h. However, the concomitant use of LAB (0.025 UC/L) along with MTGase could induce the formation of denser and finer gel network with smaller pores and higher storage modulus (G') compared to SCMM treated with only LAB. Electrophoresis and mass spectrometry results indicated that LAB improve MTGase-dependent polymerization of proteins. In addition, this study investigates the effect of LAB and MTGase treatment on the rheology behavior of the derived gel products. In general, the use of both bio-coagulants for the manufacture of a mixed protein gel, might open new horizons in the field of novel nutrional and functional foods.


Assuntos
Géis/química , Lactobacillales/metabolismo , Leite/química , Leite de Soja/química , Transglutaminases/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida/métodos , Manipulação de Alimentos/métodos , Humanos , Lactobacillales/enzimologia , Espectrometria de Massas/métodos , Leite/enzimologia , Leite/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Polimerização , Reologia , Alimentos de Soja/análise , Leite de Soja/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo
15.
Heliyon ; 5(8): e02287, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485514

RESUMO

The biomolecular characterization of edible products is gaining an increasing importance in food chemistry. The characteristic aroma or bouquet of a wine is the result of complex interactions of volatile molecules and odor receptors. Its characterization is the subject of many different studies, aimed at the development of new methods to be used for the discovery of frauds and for the typization of Protected Designation of Origin (P.D.O.) or Protected Geographic Indication (P.G.I.) wines. We previously outlined the proteomic profile of three cultivars of Vitis vinifera from South Italy (Campania) used for white wine production (Fiano, Greco and Falanghina) during the ripening. In this work, we present a mass spectrometry based study aimed at obtaining the profile of volatiles on the same samples using solid phase micro extraction coupled to gas chromatography. We demonstrated that some of the main constituents of aroma (namely terpenes, alcohols, aldehydes, etc.) were characteristic of certain grapes and absent in others.

16.
Food Res Int ; 120: 26-32, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000238

RESUMO

The official methodologies used for the identification and comparison of vine cultivars are ampelography and ampelometry. These methodologies are essentially based on qualitative assessments or biometric dependent morphological features of the plant. The heterogeneity of cultivars and consequently the increasing demand for a more detailed product typization, led to the introduction of new methodologies for the varietal characterization. In this scenario, proteomics has already proved to be a very useful discipline for the typization of many kinds of edible products. In this paper, we present a proteomic study carried out on three cultivars of Vitis vinifera peculiar of south Italy (Campania) used for white wine production (Fiano, Greco and Falanghina) by advanced biomolecular mass spectrometry approach. Our data highlight variations in the proteomic profiles during ripening for each cultivar and between analyzed cultivars, thus suggesting a new way to outline the biomolecular signature of vines.


Assuntos
Frutas/química , Vitis/química , Vinho , Humanos , Itália , Espectrometria de Massas/métodos , Proteômica/métodos , Especificidade da Espécie , Vitis/classificação
17.
Mol Cell Biochem ; 451(1-2): 165-171, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30014221

RESUMO

The reaction of free amino groups in proteins with reactive carbonyl species, known as glycation, leads to the formation of mixtures of products, collectively referred to as advanced glycation endproducts (AGEs). These compounds have been implicated in several important diseases, but their role in pathogenesis and clinical symptoms' development is still debated. Particularly, AGEs are often associated to the formation of amyloid deposits in conformational diseases, such as Alzheimer's and Parkinson's disease, and it has been suggested that they might influence the mechanisms and kinetics of protein aggregation. We here present the characterization of the products of glycation of the model protein MNEI with methylglyoxal and their effect on the protein structure. We demonstrate that, despite being an uncontrolled process, glycation occurs only at specific residues of the protein. Moreover, while not affecting the protein fold, it alters its shape and hydrodynamic properties and increases its tendency to fibrillar aggregation. Our study opens the way to in deep structural investigations to shed light on the complex link between protein post-translational modifications, structure, and stability.


Assuntos
Amiloide/química , Proteínas de Plantas/química , Agregados Proteicos , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/química , Glicosilação , Proteínas de Plantas/metabolismo , Aldeído Pirúvico/metabolismo
18.
Planta ; 248(2): 465-476, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777363

RESUMO

MAIN CONCLUSION: Plastid-based MNEI protein mutants retain the structure, stability and sweetness of their bacterial counterparts, confirming the attractiveness of the plastid transformation technology for high-yield production of recombinant proteins. The prevalence of obesity and diabetes has dramatically increased the industrial demand for the development and use of alternatives to sugar and traditional sweeteners. Sweet proteins, such as MNEI, a single chain derivative of monellin, are the most promising candidates for industrial applications. In this work, we describe the use of tobacco chloroplasts as a stable plant expression platform to produce three MNEI protein mutants with improved taste profile and stability. All plant-based proteins were correctly expressed in tobacco chloroplasts, purified and subjected to in-depth chemical and sensory analyses. Recombinant MNEI mutants showed a protein yield ranging from 5% to more than 50% of total soluble proteins, which, to date, represents the highest accumulation level of MNEI mutants in plants. Comparative analyses demonstrated the high similarity, in terms of structure, stability and function, of the proteins produced in plant chloroplasts and bacteria. The high yield and the extreme sweetness perceived for the plant-derived proteins prove that plastid transformation technology is a safe, stable and cost-effective production platform for low-calorie sweeteners, with an estimated production of up to 25-30 mg of pure protein/plant.


Assuntos
/metabolismo , Edulcorantes/metabolismo , Cloroplastos/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas Mutantes , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Edulcorantes/isolamento & purificação , Paladar , Transformação Genética
19.
Environ Sci Pollut Res Int ; 24(10): 9734-9740, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28251536

RESUMO

Low-calorie sweeteners are widespread. They are routinely introduced into commonly consumed food such as diet sodas, cereals, and sugar-free desserts. Recent data revealed the presence in considerable quantities of some of these artificial sweeteners in water samples qualifying them as a class of potential new emerging contaminants. This study aimed at evaluating the ecotoxicity profile of MNEI and Y65R-MNEI, two engineered products derived from the natural protein monellin, employing representative test organism such as Daphnia magna, Ceriodaphnia dubia, and Raphidocelis subcapitata. Potential genotoxicity and mutagenicity effects on Salmonella typhimurium (strain TA97a, TA98, TA100, and TA1535) and Escherichia coli (strain WP2 pkM101) were evaluated. No genotoxicity effects were detected, whereas slight mutagenicity was highlighted by TA98 S. typhimurium. Ecotoxicity results evidenced effects approximately up to 14 and 20% with microalgae at 500 mg/L of MNEI and Y65R-MNEI, in that order. Macrophytes and crustaceans showed no significant effects. No median effective concentrations were determined. Overall, MNEI and Y65R-MNEI can be classified as not acutely toxic for the environment.


Assuntos
Ecotoxicologia , Adoçantes não Calóricos , Animais , Escherichia coli/genética , Testes de Mutagenicidade , Mutagênicos , Salmonella typhimurium/genética , Edulcorantes
20.
Langmuir ; 33(9): 2096-2102, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28191981

RESUMO

The exploitation of easily accessible and nontoxic natural catechol compounds for surface functionalization and coating is attracting growing interest for biomedical applications. We report herein the deposition on different substrates of chemically stable thin films by autoxidation of 1 mM caffeic acid (CA) solutions at pH 9 in the presence of equimolar amounts of hexamethylenediamine (HMDA). UV-visible, mass spectrometric, and solid state 13C and 15N NMR analysis indicated covalent incorporation of the amine during CA polymerization to produce insoluble trioxybenzacridinium scaffolds decorated with carboxyl and amine functionalities. Similar coatings are obtained by replacing CA with 4-methylcatechol (MC) in the presence of HMDA. No significant film deposition was detected in the absence of HMDA nor by replacing it with shorter chain ethylenediamine, or with monoamines. The CA/HMDA-based films resisted oxidative and reductive treatments, displayed efficient Fe(II) and Cu(II) binding capacity and organic dyes adsorption, and provided an excellent cytocompatible platform for growing embryonic stem cells. These results pointed to HMDA as an efficient cross-linking mediator of film deposition from natural catechols for surface functionalization and coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...